

ii | P a g e

Teaching & Learning Step-by-step Guide:

Artificial Intelligence Application for Spatial

Analysis and Planning

Authors

Amila Jayasinghe

Samith Madusanka

 Harini Sawandi

Publisher

University of Moratuwa

iii | P a g e

Author contribution

1. Amila Jayasinghe (Supervision, Conceptualisation, Methodology, Validation), Department of Town &

Country Planning, University of Moratuwa, Sri Lanka.

2. Samith Madusanka (Formal Analysis, Writing—original draft preparation), Department of Town &

Country Planning, University of Moratuwa, Sri Lanka.

3. Harini Sawandi (Project Administration, Review and Editing), Department of Town & Country Planning,

University of Moratuwa, Sri Lanka.

All authors have read and agreed to the published version of the book.

Contact authors amilabj@uom.lk

This book was produced with the valuable support of the Erasmus+ Capacity Building in Higher Education

(CBHE) project ‘Curricula Enrichment for Sri Lankan Universities delivered through the application of

Location-Based Services to Intelligent Transport Systems’ (LBS2ITS https://lbs2its.net/)

Project Number: 618657-EPP-1-2020-1-AT-EPPKA2-CBHE-JP

Programme: Erasmus+

Key Action: Cooperation for innovation and the exchange of good practices

Action Type: Capacity Building in Higher Education

Co-funding: Erasmus+ Programme of the European Union

This book was reviewed as an Open Education Resource for University students by Dr Rico Wittwer

(Technische Universität Dresden — TU Dresden, Germany) under the LBS2ITS project.

lbs2its.net

Curricula Enrichment delivered through

the Application of Location-based Services

to Intelligent Transport Systems

LBS2ITS

mailto:amilabj@uom.lk
https://lbs2its.net/

iv | P a g e

Edition

First Edition - May 2025

Copyright

Teaching & Learning book Step-by-step Guide Artificial Intelligence Application for Spatial Analysis

and Planning © 2025 by Amila Jayasinghe, Samith Madusanka , Harini Sawandi is licensed under

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International. To view a copy of this

license, visit https://creativecommons.org/licenses/by-nc-nd/4.0/

Some Rights Reserved

ISBN 978-955-9027-88-1 (ebook)

Citation

Jayasinghe, A., Madusanka, S., & Sawandi, H. (2025). Teaching & learning step-by-step guide—

Artificial intelligence application for spatial analysis and planning (1st ed.). University of Moratuwa.

Disclaimer

This publication is designed to provide accurate and authoritative information in regard to the subject

matter covered. The contents and views in this publication do not necessarily reflect the views of the

publisher.

Publisher

University of Moratuwa

https://creativecommons.org/licenses/by-nc-nd/4.0/

v | P a g e

PREFACE

This book serves as open educational material for both undergraduate and postgraduate degree programs,

offering a detailed, step-by-step guide to machine learning techniques using XGBoost and decision trees.

Designed to bridge the gap between theoretical knowledge and practical application, this guide is

meticulously crafted to meet the needs of students, educators, and practitioners alike.

Within the book, readers will find comprehensive instructions on setting up and configuring machine

learning environments, preparing datasets, and implementing XGBoost and decision tree algorithms. It

covers various applications, including predictive modeling, classification tasks, regression analysis, spatial

analysis, urban planning, and more. The book not only enhances learning in academic settings by providing

real-world applications and case studies but also equips industry professionals with the skills necessary to

conduct advanced data analysis and contribute meaningful insights in their fields.

Key topics include detailed steps on initializing and configuring machine learning models to ensure optimal

performance and accuracy, along with guidelines on effective data preprocessing to achieve high-quality

input data. The book provides comprehensive instructions on training, evaluating, and tuning XGBoost and

decision tree models. It features real-world examples and case studies that demonstrate the practical

applications of these algorithms, particularly in spatial analysis and urban planning, as well as techniques

for interpreting model results to support decision-making processes.

Whether you are a student aiming to master machine learning techniques and algorithm implementation, a

teacher looking for robust educational tools, or a practitioner in need of refining your technical expertise,

this book offers invaluable guidance and support. It ensures that users at all levels gain proficiency in

leveraging modern machine learning technologies to explore and solve complex data-driven challenges

effectively.

vi | P a g e

CONTENT

CONTENT ...vi

LIST OF FIGURES ...vii

LIST OF TABLES ...vii

1. INTRODUCTION .. 1

2. XGBOOST OR EXTREME GRADIENT BOOSTING .. 2

2.1 What is Ensemble learning? .. 2

2.2 Boosting ... 3

2.2.1 Extreme Gradient Boosting (XGBoost) Characteristics ... 5

2.2.2. Application of Extreme Gradient Boosting (XGBoost) .. 6

2.2.3 Example case study XGBoost: Analyzing Pedestrian Walking Behavior with

spatiotemporal Factors .. 6

3. DECISION TREE ANALYSIS ..25

3.1 Introduction ..25

3.2 Required Applications ..26

3.3 Methodology Workflow ..26

vii | P a g e

LIST OF FIGURES

Figure 1- Ensemble Machine Learning ... 2

Figure 2 - Boosting Process .. 3

Figure 3 -Summery of Boosting Algorithm system ... 4

Figure 4 -Extreme Gradient Boosting (XGBoost) .. 5

Figure 5 - Google Colab Environment .. 7

Figure 6 -Import Data .. 8

Figure 7 – Metrics ... 17

Figure 8 -Output of Feature Import ... 19

Figure 9 -PD Plot ... 21

Figure 10 -Pd plot .. 23

Figure 11 -Introduction to Decision Tree ... 25

Figure 12 - Methodology ... 26

Figure 13 - Visualizing Decsion Tree .. 35

LIST OF TABLES

Table 1- Different Between Boosting Algorithms .. 4

Table 2 -Main Parameters ... 12

1 | P a g e

1. INTRODUCTION

This book offers comprehensive guidance for individuals and groups engaged in evaluating and tackling

data-driven challenges using machine learning techniques. By gathering and analyzing various types of

data, this guidebook provides users with the necessary tools and approaches to understand and solve

complex problems through the application of XGBoost and decision tree algorithms.

Machine learning technologies, including XGBoost and decision trees, are essential for analyzing and

interpreting data. They enable users to build predictive models, classify data, and perform regression

analysis with high accuracy. By utilizing these techniques, individuals can gain insights from their data,

monitor changes over time, and pinpoint areas of concern with precision.

This book is intended for a wide range of readers who are interested in applying machine learning

techniques to solve problems at local, regional, or global levels. Our goal is to equip users with the

knowledge and skills needed to carry out effective data analysis projects using XGBoost and decision trees.

The book is structured into two parts, each focusing on key aspects of machine learning:

Chapter 2: XGBoost

• Background on ensemble learning

• Introduction to boosting

• Applications with case studies

Chapter 2: Decision Trees

• Fundamentals of decision trees

• Implementation techniques

• Practical applications and examples

2 | P a g e

2. XGBOOST OR EXTREME GRADIENT BOOSTING

Machine learning is an independent area of artificial intelligence that focuses on developing algorithms and

methodologies that enable computers to gain knowledge from data and use it to make predictions or

judgments. It involves the analysis of algorithms that can improve their efficiency over time without needing

explicit programming. Before moving into the precise algorithms of XGBoost, it is crucial to have a

comprehensive grasp of the fundamental concepts and principles of machine learning. In the upcoming

sections, we will examine the fundamental principles of machine learning to gain a deeper comprehension

of the XGBoost model.

2.1 What is Ensemble learning?

Ensemble learning is a method in machine learning that combines many learners, to generate more

accurate predictions. To clarify, an ensemble model is formed by integrating multiple different models to

generate predictions that are more precise than those made by a single model on its own 1.

,

Ensemble Learning

Parallel Sequential

Parallel methods train each base learner apart

from the others. Per its name, then, parallel

ensembles train base learners in parallel and

independent of one another.

Sequential methods train a new base learner

so that it minimizes errors made by the

previous model trained in the preceding step.

Ensemble

Model

Sample 1

Sample 2

Sample 3

Model 1

Model 2

Model 3

Training
Data

Sample 1

Sample 2

Sample 3

Model 1

Model 2

Model 3

Training
Data Ensemble

Model

Homogenous Heterogenous

Same base learning different algorithms

Bagging
Eg - Random Forest

Stacking
Eg - Logistic Regression

 Boosting

Adaptive
boosting

(AdaBoost)

Gradient
boosting

(XG Boost)

Figure 1- Ensemble Machine Learning

3 | P a g e

2.2 Boosting

Boosting is a sequential ensemble learning technique that combines multiple weak learners (models that

perform slightly better than random guessing) to create a strong learner. It works by sequentially training

models, where each new model focuses on correcting the errors made by the previous ones. The final

prediction is a weighted sum of the predictions from all the models. Boosting never changes the previous

predictor and only corrects the next predictor by learning from mistakes.

Figure 2 - Boosting Process

Final

Prediction

Majority voting considers each base

learner’s prediction for a given data instance

and outputs a final prediction determined by

whatever the majority of learners predict.

……………
.

Training

Data

Test

Data
Model

1

Wrong

Prediction

Model

2

Correct

Prediction

Wrong

Prediction

Model

n

Correct

Prediction

Average all Prediction

Voting

Correct

Prediction

T
e

s
ti

n
g

u
s

in
g

T
e

s
t

D
a
ta

Te
st

in
g

us
in

g
Te

st

D
at

a

T
e

s
ti

n
g

u
s

in
g

T
e

s
t

D
a
ta

U
p

d
a

te
 n

e
w

 W
ig

h
t

U
p

d
a

te
 n

e
w

 W
ig

h
t

4 | P a g e

There are Two of the most prominent boosting methods,

Features Gradient boosting Adaptive boosting (AdaBoost)

Training

Approach

Models are trained to correct residuals of

previous models using gradient descent.

Models are trained to focus on

misclassified instances by adjusting

weights.

Error Focus

Focuses on minimizing the residual

errors of previous models.

Focuses on correctly classifying the hard

instances that previous models got

wrong.

Combination

Method

Combines models by summing their

predictions.

Combines models by a weighted vote

based on accuracy.

Loss Function
Flexible; can use various loss functions

(e.g., MSE, log-loss).

Primarily uses exponential loss function.

Application
Suitable for both regression and

classification.

Primarily used for classification (binary

and multi-class)

Complexity
More complex, can be computationally

intensive, and prone to overfitting.

Simpler, and faster, but can be sensitive

to noisy data and outliers.

Table 1- Different Between Boosting Algorithms

- Adaptive boosting (AdaBoost) weights model errors - AdaBoost adds weights to the previous learner’s

misclassified samples, causing the next learner to prioritize those misclassified samples.

- Gradient boosting uses residual errors when training new learners - In this way, it attempts to close

the gap of error left by one model.

Train Intial

Model

Make Initial

Prediction
Calculate

Errors

Update weights

based on Erros

Train Intial

Model

Make Initial

Prediction

Calculate

Errors
Combine

Predictions

Train Intial

Model

Make Initial

Prediction

Calculate

Errors

Update weights

based on Erros

Update weights

based on Erros

Final

Predictions

Intialize

Model

Repeat Until Stopping Criterion Met

Unfortunately, sklearn contains no pre-defined functions for implementing boosting. The

Extreme Gradient Boosting (XGBoost) open-source library, however, provides code for

implementing gradient boosting in Python. This study uses XGBoost for its powerful gradient

boosting capabilities.

Figure 3 -Summery of Boosting Algorithm system

5 | P a g e

2.2.1 Extreme Gradient Boosting (XGBoost) Characteristics

XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible, and

portable. It implements machine learning algorithms under the Gradient Boosting framework. XGBoost

provides a parallel tree boosting (also known as GBDT, GBM) that solves many data science problems in

a fast and accurate way.

Figure 4 -Extreme Gradient Boosting (XGBoost)

Source- https://medium.com/sfu-cspmp/xgboost-a-deep-dive-into-boosting-f06c9c41349

Do You Know?

Decision trees were able to solve both classification and regression problems but suffered from the

overfitting issues quickly to tackle this we assemble multiple decision trees with slight modification in

data formation it creates begin and random forest. After that researcher thought that assembly

transdermally was time consuming and computationally inefficient. Then why not build trees sequentially

and improve over those parts where previous trees filled. That is where Boosting came into the picture.

Later this boost in algorithm started utilizing the gradient descent algorithm to form trees sequentially

and minimize the errors in prediction hence these algorithms are called gradient boosting.

https://medium.com/sfu-cspmp/xgboost-a-deep-dive-into-boosting-f06c9c41349

6 | P a g e

2.2.2. Application of Extreme Gradient Boosting (XGBoost)

• Data Science Competitions

• Finance -Credit Scoring, Fraud Detection, Stock Market Prediction

• Marketing- Customer Churn Prediction, Customer Segmentation

• Healthcare- Disease Prediction, Medical Imaging, Survival Analysis

• Manufacturing- Predictive Maintenance, Quality Control

• Retail- Sales Forecasting, Inventory Management, Price Optimization

• Text and Speech Analytics-Sentiment Analysis, Speech Recognition

• Energy- Load Forecasting, Fault Detection

2.2.3 Example case study XGBoost: Analyzing Pedestrian Walking Behavior with

spatiotemporal Factors

Using machine learning to analyze how spatiotemporal factors influence pedestrian walking behavior

patterns. Specifically, the relationship between walking speed and various spatial factors (such as image

segmentation factors, isovist factors, and space syntax factors) is modeled using XGBoost. The aim is to

understand the influence of these factors on walking speed among university students.

Problem Description:

Dependent Variable (Target): Walking speed of pedestrians.

Independent Variables (Features): Spatial factors, including:

• Image Segmentation Factors: Attributes derived from processing images of the walking

environment.

• Isovist Factors: Measures related to the visibility and spatial layout from a specific vantage point.

• Space Syntax Factors: Characteristics of spatial configurations influencing movement and

behavior.

By examining the feature importance, you can determine which spatial factors (image segmentation, isovist,

space syntax) have the most significant impact on walking speed. This analysis can help urban planners,

architects, and researchers understand the key determinants of pedestrian behavior and design more

effective and efficient urban spaces.

This approach showcases the power of XGBoost in handling complex, multi-faceted data and extracting

valuable insights from it.

7 | P a g e

Step 01

To begin coding, click on 'File' in the menu bar, then select 'New notebook' to create a new notebook. Once

the notebook is created, you can start writing and executing code by following the provided code snippets

below.

Figure 5 - Google Colab Environment

Google Colab,

Google Colab is a cloud-based platform provided by Google that allows for the creation and

sharing of Jupyter notebook files. It offers free access to GPU (Graphical Processing Unit)

and TPU (Tensor Processing Unit) resources, making it ideal for running machine learning

algorithms and data analysis tasks. And you need to have a google account.

Visual Studio Code (VS Code) with Python Extension, PyCharm, RStudio also can use.

You can access to the google colab through the website https://colab.research.google.com/

Editable Code (As per the purpose of the study, user need to change the code

 Fixed\Common Code (User can use this code as it is)

https://colab.research.google.com/

8 | P a g e

Step 02

Data Preprocessing and Initial Model Training:

To import the file (CSV) you need to upload it into the Google Colab environment as shown in Figure 6

and then right-click and copy the path and paste it.

Figure 6 -Import Data

This section imports necessary libraries (matplotlib.pyplot) for plotting and “pandas” for data manipulation)

and reads a CSV file ('All Points.csv') into a Pandas DataFrame “df”.

from matplotlib import pyplot as plt

import pandas as pd

Read the CSV file into a DataFrame

df = pd.read_csv('/content/All Points.csv')

df

9 | P a g e

Step 03

Correlation Calculation :

• This part calculates the correlation matrix (corrmat) for the DataFrame df using df.corr() from

Seaborn (sns) and Matplotlib (plt) libraries.

• Saving to Excel: It saves the correlation matrix to an Excel file named 'correlation.xlsx' in the

/content/ directory.

• Top Correlated Features: top_corr_features contains the indices of the top correlated features

based on the correlation matrix

.

Step 04

Feature Selection :

This snippet selects the features (X) and the target variable (Y) from the DataFrame df.

• X contains columns in CSV from index 3 to 23 assuming these are the features (Spatial Factors).

• Y contains a column at index 2, assuming this is the target variable (Walking speed)

Step 05

XGBoost Model Training and Evaluation :

Correlation

import seaborn as sns

import matplotlib.pyplot as plt

Calculate correlation matrix

corrmat = df.corr()

top_corr_features = corrmat.index

Save correlation matrix to an Excel file

corrmat.to_excel('/content/correlation.xlsx', index=False)

print(corrmat)

from numpy import int64

Selecting features (X) and target variable (Y)

X = df.iloc[:, 3:23] # Assuming columns 3 to 23 are the features

Y = df.iloc[:, 2] # Assuming column 2 is the target variable

print(X.head())

10 | P a g e

• Binary Conversion: Y_binary_xgb converts the target variable Y to binary based on whether each

value is greater than the mean of Y.

• Model Initialization: xgb_classifier initializes an XGBoost classifier (XGBClassifier).

• Train-Test Split: The data (X and Y_binary_xgb) is split into training (X_train_xgb, Y_train_xgb) and

test sets (X_test_xgb, Y_test_xgb).

• Model Training and Prediction: The XGBoost classifier is trained (xgb_classifier.fit) on the training

data and used to predict (xgb_classifier.predict) outcomes on the test set.

• Evaluation Metrics: Metrics like accuracy, precision, recall, F1-score, and AUC score are calculated

to evaluate the model's performance on the test set.

Convert target variable to binary for classification

Y_binary_xgb = (Y > Y.mean()).astype(int)

Assuming XGBClassifier

xgb_classifier = xgboost.XGBClassifier()

Split the data into training and test sets

X_train_xgb, X_test_xgb, Y_train_xgb, Y_test_xgb = train_test_split(X, Y_binary_xgb, test_size=0.2)

Fit the XGBoost model

xgb_classifier.fit(X_train_xgb, Y_train_xgb)

Make predictions on the test set

y_pred_xgb = xgb_classifier.predict(X_test_xgb)

Evaluate the model

accuracy_xgb = accuracy_score(Y_test_xgb, y_pred_xgb)

precision_xgb = precision_score(Y_test_xgb, y_pred_xgb)

recall_xgb = recall_score(Y_test_xgb, y_pred_xgb)

f1_xgb = f1_score(Y_test_xgb, y_pred_xgb)

roc_auc_xgb = roc_auc_score(Y_test_xgb, xgb_classifier.predict_proba(X_test_xgb)[:, 1])

11 | P a g e

Step 06

Hyperparameter Tuning with RandomizedSearchCV :

Hyperparameter Grid (params): Defines a dictionary params containing different values for

hyperparameters like learning rate, max depth, min child weight, gamma, and colsample by tree.

RandomizedSearchCV Initialization: RandomizedSearchCV is initialized with a classifier (an

XGBRegressor), params, and other parameters for hyperparameter tuning.

Hyperparameter Tuning Loop: Continuously trains models with different sets of hyperparameters until either

the R-squared score (r2) reaches 0.9 or the maximum iterations (max_iterations) is reached.

Model Evaluation: For each iteration, it prints the best parameters found by RandomizedSearchCV, the

time taken for tuning, and evaluation metrics like RMSE, R-squared, and MAE for the best model.

Parameters :

• learning_rate:

Purpose: Controls the step size shrinkage during each boosting iteration. Lower values make the model
more robust by shrinking the weights on each step.

• max_depth:

Purpose: Maximum depth of a tree. Increasing this value makes the model more complex and more likely
to overfit.

• min_child_weight:

Purpose: Minimum sum of instance weight (hessian) needed in a child. Higher values prevent the model
from learning relationships that might be highly specific to the particular sample selected for a tree.

• gamma:

Purpose: Minimum loss reduction required to make a further partition on a leaf node of the tree. Higher
values lead to fewer splits.

• colsample_bytree:

Purpose: Fraction of features to consider when constructing each tree. A lower value can prevent overfitting
by introducing randomness.

Print the evaluation metrics

print("Accuracy (XGBoost):", accuracy_xgb)

print("Precision (XGBoost):", precision_xgb)

print("Recall (XGBoost):", recall_xgb)

print("F1-score (XGBoost):", f1_xgb)

print("AUC score (XGBoost):", roc_auc_xgb)

12 | P a g e

Parameter Scikit-learn Alias Recommended Range

eta learning_rate [0.01, 0.3]

max_depth max_depth [3, 10]

min_child_weight min_child_weight [1, 10]

gamma gamma [0, 0.5]

subsample subsample [0.5, 1]

colsample_bytree colsample_bytree [0.5, 1]

colsample_bylevel colsample_bylevel [0.5, 1]

lambda reg_lambda 0, 10

alpha reg_alpha [0, 10]

num_boost_round n_estimators [100, 1000]

scale_pos_weight scale_pos_weight [1, 10]

base_score base_score Typically 0.5

objective objective Depends on the task

booster booster gbtree

tree_method tree_method auto'

Table 2 -Main Parameters

Define hyperparameter grid for RandomizedSearchCV

params = {

 "learning_rate": [0.05, 0.10, 0.15, 0.20, 0.25, 0.30],

 "max_depth": [3, 4, 5, 6, 8, 10, 12, 15],

 "min_child_weight": [1, 3, 5, 7],

 "gamma": [0.0, 0.1, 0.2, 0.3, 0.4],

 "colsample_bytree": [0.3, 0.4, 0.5, 0.7]

}

Initialize XGBRegressor and RandomizedSearchCV

classifier = xgboost.XGBRegressor()

random_search = RandomizedSearchCV(classifier, param_distributions=params, n_iter=5,
scoring='accuracy', n_jobs=-1, cv=3, verbose=3)

Hyperparameter tuning loop

r2 = 0

max_iterations = 20

iteration = 0

while r2 < 0.9 and iteration < max_iterations:

 # Split the data into training and test sets

 X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2)

13 | P a g e

Fit RandomizedSearchCV to find best hyperparameters

 start_time = datetime.now()

 random_search.fit(X_train, Y_train)

 end_time = datetime.now()

 # Print the best parameters and time taken

 print("Best estimator:", random_search.best_estimator_)

 print("Best params:", random_search.best_params_)

 print("Time taken:", end_time - start_time)

 # Fit the model with best hyperparameters

 xgb = XGBRegressor(**random_search.best_params_)

 xgb.fit(X_train, Y_train)

 # Make predictions on the test set

 y_pred = xgb.predict(X_test)

 # Calculate evaluation metrics

 rmse = np.sqrt(mean_squared_error(Y_test, y_pred))

 r2 = r2_score(Y_test, y_pred)

 mae = mean_absolute_error(Y_test, y_pred)

 # Print evaluation metrics

 print("RMSE:", rmse)

 print("R-squared:", r2)

 print("MAE:", mae)

 iteration += 1

print("Finished after", iteration, "iterations.")

14 | P a g e

Step 07

Further XGBoost Model Training and Evaluation :

Model Initialization: regressor initializes an XGBRegressor with specific hyperparameters (learning_rate,

max_depth, min_child_weight, gamma, colsample_bytree).

Model Training and Prediction: It fits (regressor.fit) the model on the training data (X_train, Y_train) and

makes predictions (regressor.predict) on the test set (X_test).

Step 08

Cross-validation and Evaluation Metrics :
This snippet performs cross-validation (cross_val_score) with 5 folds (cv=5) on the regressor model using

training data

Assuming XGBRegressor and the same hyperparameters

regressor = xgboost.XGBRegressor(base_score=None, booster='gbtree', colsample_bylevel=None,

 colsample_bytree=0.7, gamma=0.3, learning_rate=0.05,

 max_delta_step=None, max_depth=8, min_child_weight=3,

 n_estimators=None, n_jobs=None, nthread=None,

 objective=None, random_state=None, reg_alpha=None,

 reg_lambda=None, scale_pos_weight=None, seed=None, silent=None,

 subsample=None, missing=np.nan) # Set missing parameter

Fit the model with training data

regressor.fit(X_train, Y_train)

Make predictions on the test set

predictions = regressor.predict(X_test)

from sklearn.model_selection import cross_val_score

Perform cross-validation

score = cross_val_score(regressor, X_train, Y_train, cv=5)

Print cross-validation scores and mean score

print(score)

print(score.mean())

15 | P a g e

.

Step 09

Evaluating XGBoost Regressor :

This snippet performs cross-validation (cross_val_score) with 5 folds (cv=5) on the regressor model using

training data

• Imports: Import necessary libraries and functions (mean_squared_error, r2_score,

mean_absolute_error, XGBRegressor, numpy).

• Fitting the Model: regressor.fit(X_train, Y_train) trains the XGBoost regressor model on the training

data (X_train, Y_train).

• Prediction: y_pred = regressor.predict(X_test) makes predictions on the test data (X_test).

Cross validation -

Cross validation is a statistical method to evaluate machine learning models on unseen data. It comes

in handy when the dataset is limited and prevents overfitting by not taking an independent sample

(holdout) from training data for validation. By reducing the size of training data, we are compromising

with the features and patterns hidden in the data which can further induce errors in our model.

k-fold Cross-validation — In k-fold cross-validation, data is shuffled and divided into k equal sized

subsamples. One of the k subsamples is used as a test/validation set and remaining (k -1) subsamples

are put together to be used as training data. Then we fit a model using training data and evaluate it using

the test set. This process is repeated k times so that every data point stays in validation set exactly once.

The k results from each model should be averaged to get the final estimation. The advantage of this

method is that we significantly reduce bias, variance, and also increase the robustness of the model.

Source - https://medium.com/sfu-cspmp/xgboost-a-deep-dive-into-boosting-f06c9c41349

https://medium.com/sfu-cspmp/xgboost-a-deep-dive-into-boosting-f06c9c41349

16 | P a g e

Common metrics:

• RMSE (Root Mean Squared Error): rmse = np.sqrt(mean_squared_error(Y_test, y_pred)).

Measures the average magnitude of the error in predicting numeric values. Lower values indicate

better fit.

• R-squared: r2 = r2_score(Y_test, y_pred). Represents the proportion of variance in the dependent

variable that is predictable from the independent variables. Values closer to 1 indicate better fit.

• MAE (Mean Absolute Error): mae = mean_absolute_error(Y_test, y_pred). Measures the average

absolute difference between predicted and actual values. Similar to RMSE but gives equal weight

to all errors.

from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error

from xgboost import XGBRegressor

import numpy as np

regressor.fit(X_train, Y_train)

Predict on the test set

y_pred = regressor.predict(X_test)

Calculate the RMSE

rmse = np.sqrt(mean_squared_error(Y_test, y_pred))

print("RMSE:", rmse)

Calculate the R-squared

r2 = r2_score(Y_test, y_pred)

print("R-squared:", r2)

Calculate the MAE

mae = mean_absolute_error(Y_test, y_pred)

print("MAE:", mae)

17 | P a g e

Figure 7 – Metrics

Source - https://spotintelligence.com/2024/03/27/regression-metrics-for-machine-learning/

Step 10

Feature Importance Analysis :

Import plotly. express, pandas, and XGBRegressor.

What is PDP Plot

The partial dependence plot (short PDP or PD plot) shows the marginal effect one or two features have

on the predicted outcome of a machine learning model (J. H. Friedman 200130). A partial dependence

plot can show whether the relationship between the target and a feature is linear, monotonic or more

complex.

https://spotintelligence.com/2024/03/27/regression-metrics-for-machine-learning/

18 | P a g e

• Get Feature Importances: importance regressor.get_booster().get_score(importance_type='gain')

retrieves feature importance scores based on gain.

• Normalize Importances: Normalizes importance scores to range from 0 to 100.

• Convert to DataFrame: Converts the dictionary of feature importances into a pandas DataFrame

(imp_df).

• Save to Excel: Saves the DataFrame to an Excel spreadsheet named feature_importance.xlsx.

• Plot with Plotly: Uses Plotly to create a horizontal bar plot (px.bar) showing feature importances

(imp_df).

import plotly.express as px

import pandas as pd

from xgboost import XGBRegressor

Assuming you have already trained your XGBoost model and named it regressor

Get feature importances

importance = regressor.get_booster().get_score(importance_type='gain')

import plotly.express as px

import pandas as pd

from xgboost import XGBRegressor

Assuming you have already trained your XGBoost model and named it regressor

Get feature importances

importance = regressor.get_booster().get_score(importance_type='gain')

Normalize the importance values to 0-100

importance_sum = sum(importance.values())

importance_normalized = {key: value / importance_sum * 100 for key, value in importance.items()}

19 | P a g e

Output -

Figure 8 -Output of Feature Import

The bar chart above shows the importance of various features in predicting walking speed. Feature

importance indicates how much each feature contributes to the model's predictions. In this context, several

features have been considered, ranging from "Perimeter" to "PVF."

Key Features:

PVF (People View Factor): This feature stands out as the most important one in the model. The PVF

represents how much of the road is visible to people, which can significantly affect their walking speed.

Convert to DataFrame

imp_df = pd.DataFrame.from_dict(importance_normalized, orient='index', columns=['importance'])

imp_df = imp_df.reset_index().rename(columns={'index': 'feature'})

imp_df = imp_df.sort_values('importance', ascending=False)

Save the dataframe to an Excel spreadsheet

imp_df.to_excel('/content//feature_importance.xlsx', index=False)

Plot with Plotly

fig = px.bar(imp_df, x='importance', y='feature', orientation='h', title='Feature Importance')

fig.show()

20 | P a g e

Step 11

Explanation of Parameters in PDPIsolate :

• model: This is your trained XGBoost regressor model (regressor).

• df: The dataset (X) that was used to train the model. It should contain the features.

• model_features: List of feature names used in the model.

• feature: The specific feature ('BVF') for which you want to plot the PDP.

• feature_name: A descriptive name for the feature being plotted ("Building View Factor")

Step 12

Parameters in pdp_one.plot() :

• center: Whether to center the plot lines.

• plot_lines: Whether to plot the lines.

• frac_to_plot: Fraction of grid to plot. Set to 100 to plot all points.

• cluster: Whether to cluster the data.

• n_cluster_centers: Number of cluster centers.

• cluster_method: Method to use for clustering.

• plot_pts_dist: Whether to plot points distribution.

• to_bins: Whether to group x values into bins.

• show_percentile: Whether to show percentile.

• which_classes: Which classes to plot. Not used in regression (None).

• figsize: Figure size. Automatically determined or set to None.

• dpi: Dots per inch for figure resolution (1080).

• ncols: Number of columns for subplots (2).

• plot_params: Additional parameters for plotting ({"pdp_hl": True} includes high and low

confidence intervals).

• engine: Plotting engine ("matplotlib").

• template: Plotly template for styling ("plotly_white").

pdp_one = PDPIsolate(

 model=regressor,

 df=X,

 model_features=feature_names,

 feature='TVF',

 feature_name="Tree View Factor",

 n_classes=0,

)

21 | P a g e

Output :

Figure 9 -PD Plot

fig, axes = pdp_one.plot(

 center=True,

 plot_lines=False,

 frac_to_plot=100,

 cluster=False,

 n_cluster_centers=None,

 cluster_method='accurate',

 plot_pts_dist=True,

 to_bins=True,

 show_percentile=True,

 which_classes=None,

 figsize=None,

 dpi=1080,

 ncols=2,

 plot_params={"pdp_hl": True},

 engine="matplotlib",

 template="plotly_white",

)

22 | P a g e

The analysis of the Partial Dependence (PD) plot focuses on the Tree View Factor (TVF) and its influence

on walking speed, revealing a significant non-linear relationship. According to the graphic, as the TVF value

increases, the change in the speed values becomes negative.

Figure 10 depicts the raw values of the speed. It is important to note that while the speed decreases as the

TVF increases, the actual speed values vary within the same range from 100 to 120 which is the normal

range. This variety shows that although there is a noticeable pattern of decreased speeds as TVF

increases, the effect could vary within the same range.

Step 13

Explanation of Parameters in PDPInteract :

• model: Your trained XGBoost regressor model (regressor).

• df: The dataset (X) that was used to train the model. It should contain the features.

• model_features: List of feature names used in the model.

• n_classes: Number of classes for classification tasks. Since you're doing regression, it's set to 0.

• features: List of features for which you want to plot the interaction (['BVF', 'Time']).

• feature_names: List of descriptive names for the features being plotted (['Building View Factor',

'Time']).

Step 14

Parameters in pdp_inter.plot() :

• plot_type: Type of plot to generate ("contour" in this case for contour plot).

• to_bins: Whether to group x values into bins.

• plot_pdp: Whether to plot partial dependence plots (PDPs) for individual features.

• show_percentile: Whether to show percentile (not used here).

• which_classes: Which classes to plot. Not used in regression (None).

• figsize: Figure size. Automatically determined or set to None.

• dpi: Dots per inch for figure resolution (1080).

• ncols: Number of columns for subplots (2).

pdp_inter = PDPInteract(

 model=regressor,

 df=X,

 model_features=feature_names,

 n_classes=0,

 features=['Choice', 'Time'],

 feature_names=[Choice, 'Time'],

)

23 | P a g e

• plot_params: Additional parameters for plotting (None).

• engine: Plotting engine ("plotly").

• template: Plotly template for styling ("plotly_white").

Figure 10 -Pd plot

The figure shows that tree cover did not change the speed of walking with temporal factors.

fig, axes = pdp_inter.plot(

 plot_type="contour",

 to_bins=True,

 plot_pdp=True,

 show_percentile=False,

 which_classes=None,

 figsize=None,

 dpi=1080,

 ncols=2,

 plot_params=None,

 engine="plotly",

 template="plotly_white",

)

24 | P a g e

X-Axis (Time): Represents the values of the Time (Morning 1 and Evening 2). Y-Axis (choice) T’his could

refer to the number of route choices or options available to pedestrians.

Color Gradient: Indicates the predicted values of the target variable. The color scale ranges from lighter

shades (lower values) to darker shades (higher values).

When the Choice value is around 0.6 and time is approximately 114.600, the target value is at its peak,

indicated by the darkest shade of blue. This suggests a strong positive effect when there are more choices

available at this specific time. hen the Choice value is low (around 0.2-0.3), the target values are generally

lower, indicated by lighter shades. This indicates a less positive effect of having fewer choices.

25 | P a g e

3. DECISION TREE ANALYSIS

3.1 Introduction

Decision tree analysis is a widely utilized data mining technique for both classification and regression tasks.

This method involves developing a model that predicts the value of a target variable by learning decision

rules derived from the data features. The WEKA software application excels in transforming extensive

databases into decision trees, based on these inferred rules, and identifying potential clusters within the

data.

Figure 11 -Introduction to Decision Tree

Decision
Tree

To

Databas
e

26 | P a g e

3.2 Required Applications

WEKA Software

Software written in Java, developed at the University of Waikato, New Zealand. It provides a comprehensive

collection of tools for data preprocessing, classification, regression, clustering, association rules, and

visualization. WEKA features an intuitive graphical user interface (GUI) that makes it accessible for users

without extensive programming experience. It includes robust tools for cleaning, transforming, and

preparing data, as well as a wide range of algorithms for various machine-learning tasks. WEKA supports

model evaluation and validation methods such as cross-validation and offers visualization capabilities to

help users understand data patterns. Additionally, it allows for scripting through Java and integration with

other languages like Python and is extensible via user-defined plugins. Commonly used in academic

research and various industries, WEKA is ideal for data exploration, experimentation, and finding optimal

machine learning solutions. Its comprehensive documentation and active community support make it a

valuable resource for anyone involved in data mining and machine learning.

3.3 Methodology Workflow

Figure 12 - Methodology

Excel Notpad WEKA

27 | P a g e

Step 1: Data Preparation

Data preparation is required for each variable. This study has divided the study area into 300 zones, with

each zone containing 8 variables. The value for each variable can be either numerical or textual, but

every variable must have a value in all zones.

Step 2: Convert the data set into sort codes

After completing data preparation, it is necessary to reduce the character length of the data. For example,

the category name "No_influence" is quite long and affects the readability of the decision trees (see figure

below). Therefore, all categories should be converted into shortcodes to enhance visibility.

28 | P a g e

Step 3: After converting long names to shortcodes

Step 4: Save the Excel file under the CSV file format

Save the Excel data file under CSV file format. [File tab >>> Save as >>> Browse and select save

folder>>> Type file name >>> change save as type to CSV >>> save]

29 | P a g e

Step 5: Open CSV file via Notepad

Need to open saved CSV file via Notepad [right click on the CSV file >>> open with >>> Notepad]

The CSV file was opened
using Notepad. It contains
column headings and
values for each zone under
the 8 variables.

30 | P a g e

Step 6: assign headings with attribute names

Data column headings need to be included in the file. First, assign the name of the file using @relation.

Next, assign the heading for the first variable with @attribute and include its unique values within brackets.

Repeat this process for the next variable, assigning its heading and unique values. Follow the same

procedure for all 8 variables. Finally, assign the data value area by using the @data code, as illustrated in

the figure below.

Step 7: save text [notpad file] under .arff format.

File >>> Save as >>> find save location >>> provide a save file name and at the end need to type .arff

>>> click save

Step 8: Open the WEKA application and click on the Explorer

Download link: https://waikato.github.io/weka-wiki/downloading_weka/

https://waikato.github.io/weka-wiki/downloading_weka/

31 | P a g e

 Please visit the above link to download the WEKA application compatible with your computer. Once

downloaded, install the application by double-clicking on the file. After installation, open the WEKA

software and click on "Explorer".”

Once you click on "Explorer", the following interface will appear.

32 | P a g e

Step 9: Open data file

Click on the processing tab >>> open file >>> select data file >>> click open

The following interface will appear once you open the datafile.

Step 10: select the reclassification method and validation method.

33 | P a g e

Click on the classify tab as below figure. To select the tree model, click on Choose >>> Trees >>> J48.

There are several models available for classification. To visualize the dataset classification as a tree, select

the J48 model. Next, choose a validation method. Both cross-validation and percentage split methods can

be used. Select either cross-validation or percentage split according to your requirements.

Step 11: Run the model

Once the J48 model is set up, it will appear next to the "Choose" option. After completing the model

selection and choosing the validation method, click on the "Start" button.

Once the model is run, the results will appear, including the Kappa value, accuracy, and major statistical

values.

1

2

34 | P a g e

Step 12:

To view the decision tree, navigate to the highlighted red area and locate the result file in the result list

window. Right-click on the result file and select the "Visualize tree" option.

35 | P a g e

The following decision tree will appear once select 1the visualize tree option.

Figure 13 - Visualizing Decision Tree

36 | P a g e

AFTERWORD

This book marks a step forward in making advanced machine-learning techniques accessible, practical,

and relevant across academic and professional landscapes. By focusing on XGBoost and decision tree

algorithms within real-world contexts such as urban planning and spatial analysis, it empowers readers to

move beyond theory and engage directly with meaningful applications.

We hope this guide inspires continued exploration, critical thinking, and innovation in the field of data-driven

decision-making. Whether applied in classrooms, research labs, or industry settings, the tools and

techniques presented here are intended to support informed solutions to complex challenges.

As the fields of machine learning and spatial analysis continue to evolve, so too must our commitment to

lifelong learning, collaboration, and ethical data use. This book is just one step in that journey.

lbs2its.net

 618657-EPP-1-2020-1-AT-EPPKA2-CBHE-JP

