
MSc Surveying Sciences Year II Semester I Faculty of Geomatics Sabaragamuwa University of Sri Lanka 70140 Belihuloya

COURSE MATERIAL:

GNSS FOR SURVEYORS

Curricula Enrichment delivered through the Application of Location-based Services to Intelligent Transport Systems (LBS2ITS)

Co-funded by the Erasmus+ Programme of the European Union

MS214 – GNSS for Surveyors

Teaching Guide

Contents

Module Overview

1.0 GNSS Basics

- 1.1 Introduction and present GNSS's
- 1.2 Satellites, orbits and data messages
- 1.3 GNSS reference systems and time
- 1.4 How GNSS Works
- 1.5 Global and Local Augmentation Systems

2.0 GNSS signals and Receivers

- 2.1 Codes and Modulation
- 2.2 Signal-to-Noise Ratio and Ranging Precision
- 2.3 Receiver technologies and functions

3.0 Position Solutions

- 3.1 Absolute and Relative positioning
- 3.2 Differential correction and various relative positioning techniques
- 3.3 Precise Positioning with Carrier Phase
- 3.4 Geo-location techniques and indoor positioning techniques

4.0 Applications of GNSS

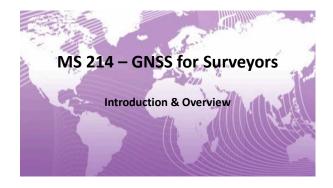
- 4.1 Application of GPS/GNSS for land surveying
- 4.2 Use of GPS/GNSS for civil applications
- 4.3 Geophysical applications
- 4.4 Creating maps with GNSS data
- 5.0 GNSS Modernization and Future
 - 5.1 New signals and Their Benefits
 - 5.2 Future Trends

Module Overview:

This course provides a conceptual overview and hands-on experience with Global Navigation Satellite System (GNSS) including GPS theory, techniques, and field data collection using various GPS technologies.

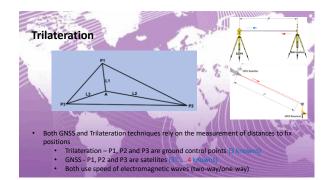
Learning Outcomes and Academic Skills

By the end of the course, students should be able to:


- Describe the principles of GNSS based positioning methods
- Describe the main components in a satellite navigation system and their functions
- Describe the satellites and signal structures used in the GNSS systems
- Explain the measurements, methods, related errors and mitigation approaches
- Explain and apply differential correction and precise positioning concepts
- Plan, perform and process GNSS measurements
- Use different GNSS positioning methods for surveying

Assessment

Assignments	40 %
Reports/Presentations	40 %
Final Exam	20 %


Teaching Organization

TEACHING ACTIVITY	SEMESTER WORKLOAD (HOURS)
lectures	30 hours
exercises / assignments	5 hours
final examination	1 hours
other (specify):	
Preparation - Student Centred Learning activities	25 hours
Field/Lab Practical activities	15 hours
Self-Learning (Library & Internet)	38 hours
Field reports and presentations	6 hours
total number of hours	150 hours

Course contents

- GNSS Introduction and Overview
- GNSS Signals and Data
- GNSS Measurements
- GNSS Positioning Techniques
- Data files and formats
- Hands-on experience on GNSS observation and dat
- GNSS Error sourcesGNSS receivers
- Differencing and Ambiguity resolution
- GNSS modernization and future
- GNSS applications

What is Global Navigation Satellite Systems (GNSS) ?

 Global navigation satellite system (GNSS) is a general term describing any satellite constellation that provides positioning, navigation, and timing (PNT) services on a global or regional basis.

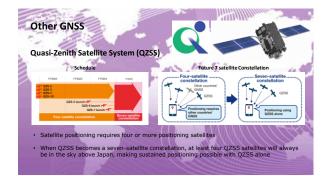
-

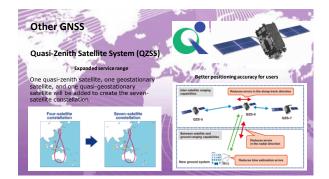
- GNSS provides global coverage. Examples of GNSS include Europe's Galileo, the USA's NAVSTAR Global Positioning System (GPS), Russia's Global'naya Navigatsionnaya Sputnikovaya Sistema (GLONASS) and China's BeiDou Navigation Satellite System.
- GPS is the most prevalent GNSS

	Capabilities	Gionass	Glonass-M	Glonass-K	Glonass-K2
GLONASS Enhancements	Time of Deployment	1982-2005	2003-2016	2011-2018	2017+
The level of GLONASS capability enhancement :	Status	Decommissioned	In use	Design maturation based on in-orbit validation	In developme
Development of the GLONASS orbital constellation structure	Nominal Orbit Parameters	Circular Alttude - 19,100 kr Inclination - 64,8" Period - 11 h 15 m			
 new generation "GLONASS-K" with enhanced capabilities 	Number of Satellites in the Constellation (Used for Navigation)	24			
GLONASS ground control segment development including GLONASS orbit and clock segment	Number of Orbital Planes	3			
enhancement • Augmentations design and development:	Number of Satellites in a Plane			8	
 The System of Differential Correction and Monitoring 	Launchers			Soyuz-2.1b, Proton-M	
 Global system of high precision definition of 	Design Lifetime, years	3.5	7	10	10
navigation and orbit and clock information in real time for civil users	Open Access Signals (for FDMA Signals Center Frequency Values are Provided)	L1OF (1602 MHz)	L10F (1602 MHz) L20F (1246 MHz)	L1OF (1602 MHz) L2OF (1248 MHz)	L10F (1602 MHz) L20F (1248 MHz)
More information: https://glonass-iac.ru/en/about_glonass/			L30C (1202 MHz) for SVs 755+	L3OC (1202 MHz) L2OC (1248 MHz) for SVs 17L+	L10C (1600 MHz) L20C (1248 MHz) L30C (1202

PaiDa	ou Navigatio	Cotollito Su	etom (PDC)		2	
Deipt	ou wavigatio		Pars.	An, 9: "	<u>s</u> .	
		Summary of sa	tellites, as of 23 June	2020		
Block	Launch	Satellite launches				Currently in orbit
JIOCK	period	Success	Failure	Planned	and healthy	
1	2000-2006	4	0	0	0	
2	2007-2019	20	0	0	12	
3	2015-present	35	0	0	30	
	Total	59	0	0	42	
			-			

Other GNSS

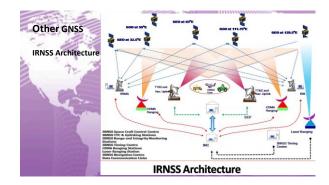


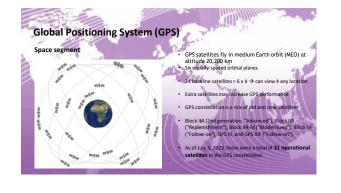

Quasi-Zenith Satellite System (QZSS)

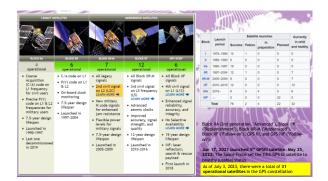
Name	Launch date	Status	Notes	
QZS-1 (Michibiki-1)	11 September 2010	Replaced by QZS-1R		
QZS-2 (Michibiki-2)	1 June 2017	Operational	Improved solar panels and increased fuel	
QZS-3 (Michibiki-3)	19 August 2017	Operational	Heavier design with additional S-band antenna on geostationary orbit	
QZS-4 (Michibiki-4)	10 October 2017	Operational	Improved solar panels and increased fuel	A A A A A A A A A A A A A A A A A A A
QZS-1R (Michibiki-1R)	26 October 2021	Operational	Replacement for QZS-1	QZS-1R launched on 26.10.2021

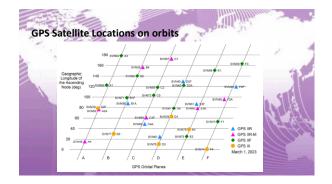
Future 7 satellite Constellation

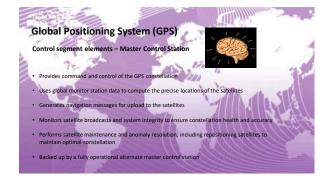
Name	Planned launch date	Status
QZS-5	2023	Future
QZS-6	2023	Future
QZS-7	2024	Future

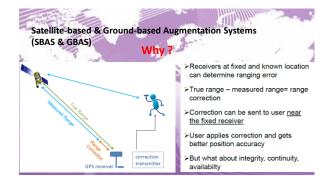


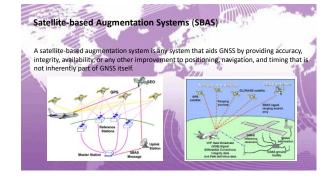


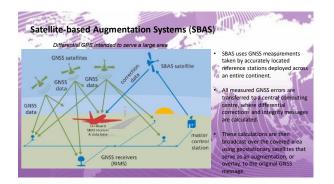


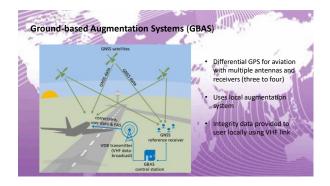


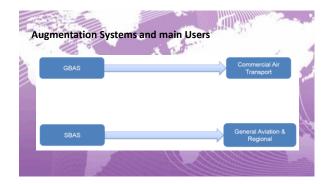


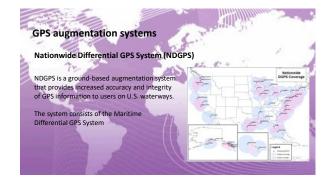


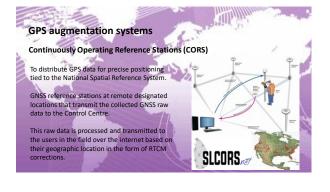


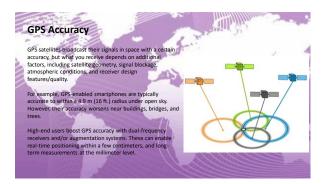


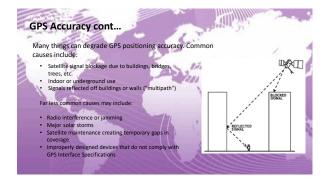


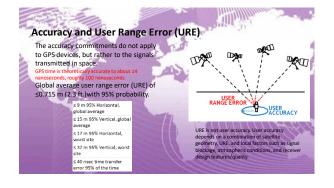


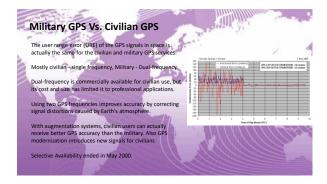


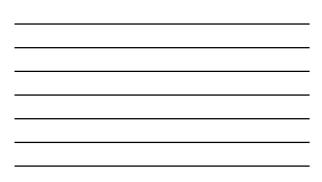


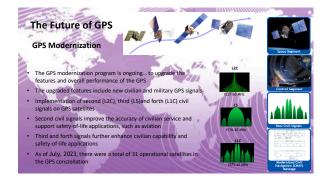


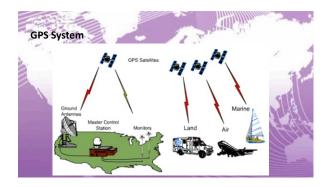


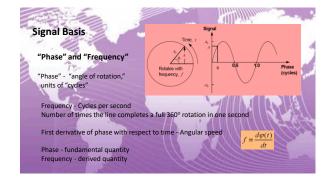


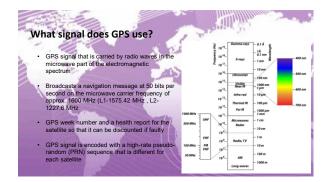


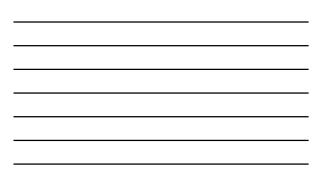


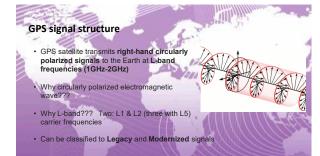


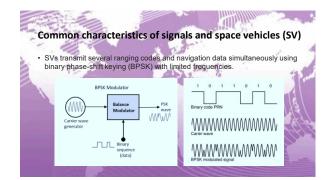


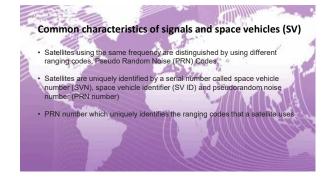


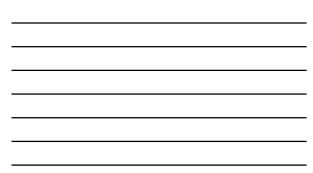


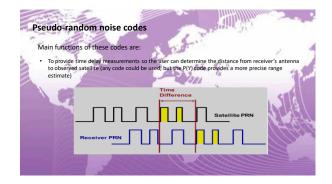


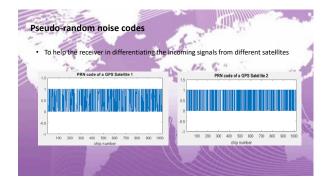


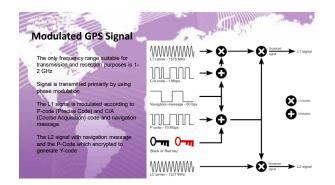


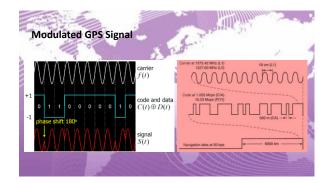


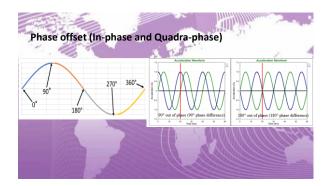


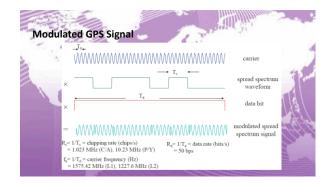



			Pla				PRN	01	02 0	3 04	05	06 01	7 08	09	10	11 12	13	14	15	16 1	17 18	19	20	21	2 2	3 24	25	26	27	28	29	30	31	32
Slot			Pla	ine			IR									s	0				s	0	0	0	R									
anor	A	в	С	D	Е	F	IRM				0	0				0			0		0										0		0	
							IF	0				0	0	0	0											0	0	0	0			0		0
1	66	58	57	61	69	70				0								0			0				0	>				0				
2	52	62	66	63	73	55	100	~	h.,	1			11		0-	Opera	tional			. 4														
3	64		72	45	50	68	~ 1								т –	Testin	y in pr	tpan	ation	for c	porati	an								.,	1			
4	48	58	53	67	51	74								E٠	8-	On or	of Spi	ro												0				
	-14					1.4	100	X.:						•	U	Unhea	altry a	nd u	nusa	ble					11									1
5		71	59	78	76		44								R -	Retire	d					-											4	
6	79	77		75		43								К.	1	œ.	e i	1.3	۶.,			14										1	20	12
in.														899	-		100	γ.	74	И.													9.0	
	١.					60																14												
BLOO		-N		GB1	1			GM	9	2009	-014	A TYP			110		BLOCK				60	1				6832		19	92-0				SERIA	L NO
200		- 2	24		0	0	0.000						ED FR				199		11	2		0	0		.0201						VAL			
203		5	6	624	23	59	59,999						ED UR				200		10	3		23	59	5/9	.99995							to u		
BLOO		-8						684	9	2809	-014	A TYP			110		BLOCK				GØ					6837		19	93-6	13.2A			SERIA	L NC
	2	2	2		0	0	0,000						LD FR				200	3	10	2		0	- 8		.0008							ED FI		
201																						23			0305									
201		- 3	1.04		23	59	59,999					VAL				н.	200		1													to u		
201	118	-8		624	6	~		GM	9	2009	-014	A TYP	E / 5	ERIA	NO	Ŀ	BLOCK	IIR			60	1				6849		20	09-6		TYP	1/	SERIA	L NC
201 8L0C0 201	2118	-H 8	9	624	0	0	0,000	604 10000	9	2009	-014	A TYP	E / S ED FR		NO	1	BLOCK 200	IIR	-H 3	2	4 60	0	0		.0006	000		20	09-6		TYP	E / E	SERIA ROPI	L NC
201 81,000 201 201	118 2 2	8		621	0 23	~		604 10000				VAL VAL		ERIA CM TIL			BLOCK 200 201	IIR	-H 3 5	2	6 6 6	1 0 23	0 59		.0000	000 999					VAL		SERIA ROM NTIL	
201 81,000 201 201 81,000	118 2 2 118	8 8 -M	9 22	62/ 1 627	4 0 23 7	0 59	0,000 59,999	604 10000 19999 604				A TYP VAL VAL	E / S LD FI LD UI E / S	ERIA OM TIL ERIA			BLOCK 200 201 BLOCK	IIR IIR	1 3 5	2	4 60	1 0 23 1	59	6 55	. 0000 . 99995	000 999 6835				154A	VAL VAL TYPI		SERIA ROM NTIL SERIA	
201 8L0C0 201 201 8L0C0 201	118 2 2 118 2	8	9 22 18	621 1 621	6 0 23 7 0	0 59 0	0.000 59,999	604 10000 19999 604 10000				A TYP VAL VAL A TYP VAL	E / S LD FI LD UI E / S LD FI	ERIA ICM ITIL ERIA ICM			8LOCK 200 201 BLOCK 201	IIR I IIA	1 3 5 6	2	60 4 6 6 2	1 0 23 1 0	59 0	6 55	. 0000 . 99995 . 0000	000 999 6835 000				1544	VAL VAL TYPI VAL		SERIA ROM NTIL SERIA ROM	
201 201 201 201 8L0O 201 201 201	118 2 2 118 2 3	8 -M 10 5	9 22	621 621	4 0 23 7 0 23	0 59	0,000 59,999	604 10000 19999 604 10000 19999	9	2009	-014	A TYP VAL VAL VAL VAL		ERIA ICH ITIL ERIA ICH ITIL	ю		8LOCK 200 201 BLOCK 201 201	IIR I IIA	1 3 5 6 7	2	60 4 6 6 2 2 2	1 0 23 1 0 23	59	6 55	.0006 .99995 .0006 .9995	000 999 6835 000 999		19	93-6	154A	TYPI VAL VAL VAL		SERIA ROM NTIL SERIA ROM NTIL	LNC
201 8L0C0 201 201 8L0C0 201	118 2 2 118 2 3 118	8 -M 10 5	9 22 18	621 627 1 630	4 0 23 7 0 23	0 59 0	0.000 59,999	604 19999 604 19999 604 19999	9	2009	-014	A TYP VAL VAL VAL VAL VAL		ERIAL ICM ITIL ERIAL ICM ITIL ERIAL	ю		8LOCK 200 201 BLOCK 201	IIR IIA IIA	1 -H 3 5 6 7	2	4 6 6 2 2 2 2 60	1 0 23 1 0 23	59 0	6 59 6 59	.0006 .99995 .0006 .9995	000 999 6835 000 999 6863		19	93-6	154A	TYPI VAL VAL VAL		SERIA ROM NTIL SERIA ROM NTIL SERIA	LNC

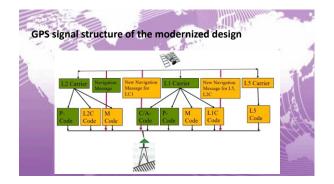


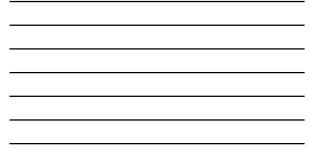


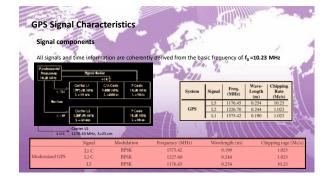


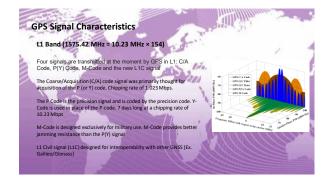


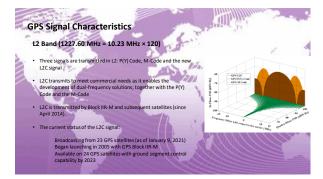


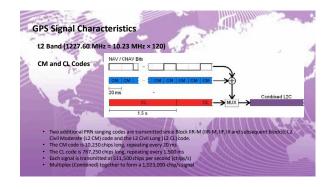


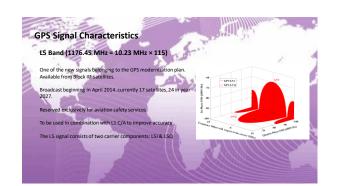


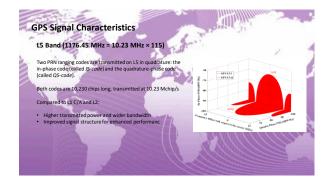


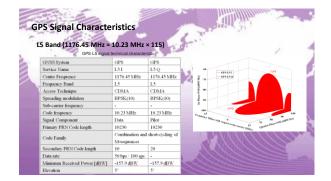






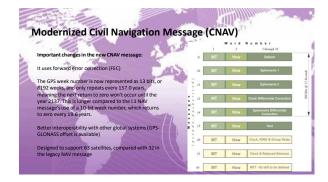


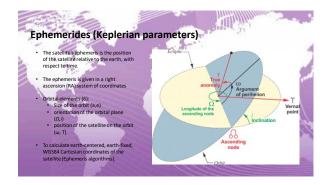

and (1575.4	12 MHz	- 10		and the second second				
and (1575.4	12 MHz					1 1 1		
	1000			100 A 1	4)	A. 511151		
	PS L1 signal to				100			1
GNSS System	GPS	G		GPS	GPS	1.410		
Service Name	C/A		IC	P(Y) Code	M-Code	MAN,		
Centre Frequency	1575.42 MHz		2 MHz	1575.42 MHz	1575.42 MHz	1.18		
Frequency Band	L1	L		LI	1.1	12115 -	-GPS CA Cade	
Access Technique	CDMA		MA	CDMA	CDMA		-GPS LIC PBA	
Signal Component Modulation	Data BPSK(1)	Data	Pilet (6.1.1/11)	Data BPSK(10)	N.A. BOCm(10.5)	1.1	GPS LIC Ibes	man
Modulation Sub-carrier	BPSK(1)	TMBOC	1.073.4	BPSK(10)	BOC ₁₀ (10,5)		-GPS N Cade	
frequency [MIID]		1.023	6.138		10.23	N.i.		
Code frequency	1.023 MHz	1.023	MHz	10.23 MHz	5.115 MHz	N3		
Primary PRN Code Joneth	1023	10	230	6.19-1012	N.A.	-100		
Code Family	Gold Codes	Weil	Codes	Combination and short- cycling of M- sequences	NA	SIL	P .10 0 Perso Officer with received to a	10 15 gradent
Secondary PRN Code length			1800		N.A.	111		
Data rate	50 bps / 50 sps	50 bps / 100 sps		50 bps / 50 sps	N.A.	100		
Minimum Received Power [dBW]	-158.5	-1		-161.5	N.A.			
Elevation	51		ço.	42	59	the second se		

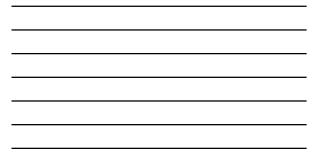


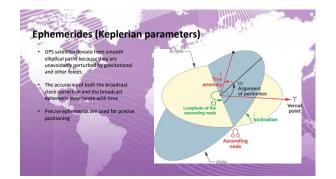
P	ignal Ch nd (1227.6		10.23 MH	100 A	characteristics	C. C	"T	;	4
GNSS System	GPS	GPS	GPS	GPS	Secondary PRN			-	
Service Name	L2 CM	L2 CL	P(Y) Code	M-Code	Code length	-		-	N.A.
Centre Frequency	1227.60 MHz	1227.60 MHz	1227.60 MHz	1227.60 MHz		IIF			
Frequency Band	L2	L2	L2	L2		50 bps / 50 sps			
Access Technique	CDMA	CDMA	CDMA	CDMA	Data rate	IIR-M		50 bps /	N.A.
Spreading modulation	BPSK(1) result of streams at 511.5		BPSK(10)	BOCsin(10,5)		Also 25 bps 50 sps with FEC		50 <u>sps</u>	
Sub-carrier frequency				10.23 MHz	Minimum	II/IIA/IIR -164.5 dBW		II/IIA/IIR -164.5 dBW	
Code frequency	511.5 kHz	511.5 kHz	10.23 MHz	5.115 MHz	Received Power	IIR-M		IIR-M	N.A.
Signal Component	Data	Pilot	Data	N.A.	[dBW]	-161.5 dBW		-161.4 dBW	N.A.
Primary PRN Code length	10,230 (20 ms)	767,250 (1.5 seconds)	6.19 x 1012	N.A.	[abw]	IIF -161.5 dBW		IIF -160.0 dBW	
			Combination		Elevation	5°		5°	5°
Code Family	M-sequence from polynomial of de		and short- cycling of M- sequences	N.A.	. /	100			-

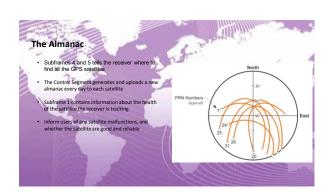


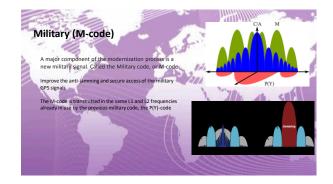


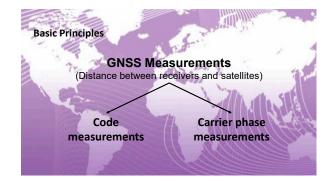

		5	,	, or a	3 through 10
ubframes	Description	1:1	TLM	How	Clock correction, GPS Week, Satellite Health, etc.
	Satellite clock, GPS time relationship	е в 2 z	TLM	How	Ephemeris
-3	Ephemeris (precise satellite orbit)	e 3 E	TLM	How	Ephemeris
	Almanac component	1	TLM	How	Interceptures, PNV 25-22 Satisfies Almaratic and Health, UTG, eds. (Solyhume 4 contains 2) subcommunicate pages
-5	(satellite network synopsis,		TLM	How	PRN 1-24 Setellite Almeniac and Health, etc. (Suffreen: 5 controls) 25 subcommented proto)

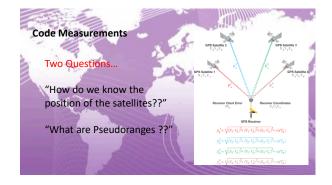


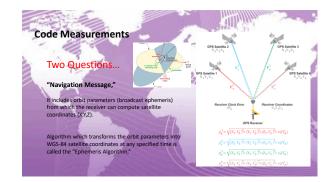


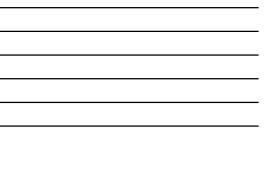


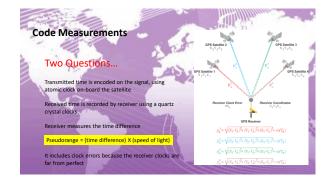




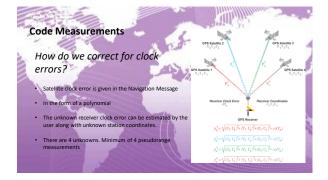


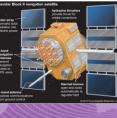


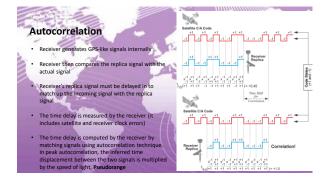


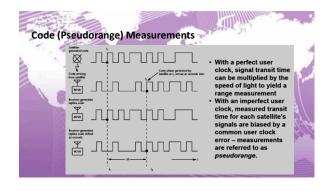


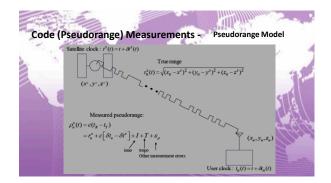
Geodetic measurement with GNSS – relative carrier phase measurements

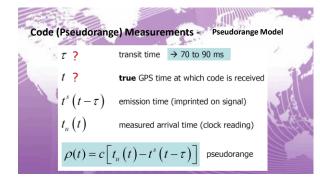


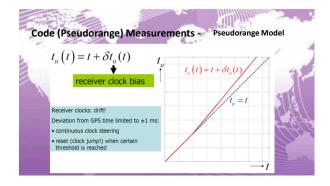


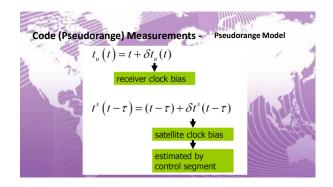




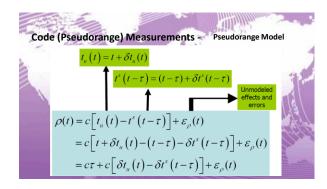

- space in the form of electromagnetic waves
- Signal transmit at very close to the speed of light in a vacuum
- signal then enters the receiver and measures it using a process known as "Autocorrelation."

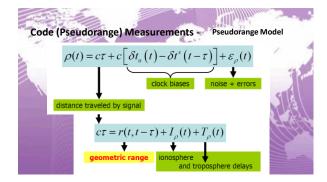

R



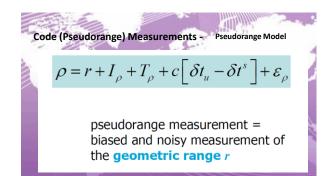


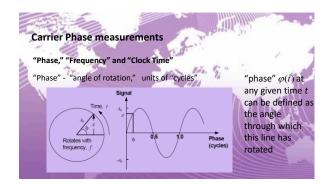


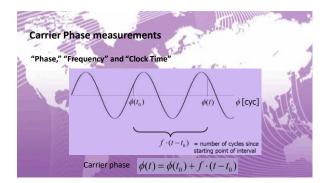


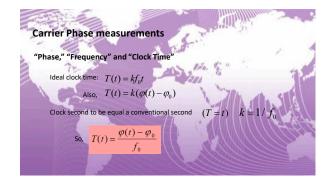


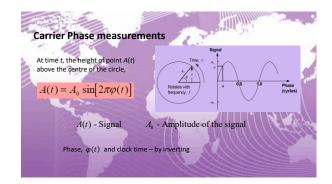


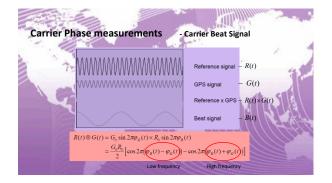


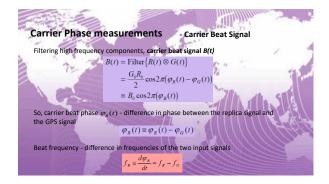


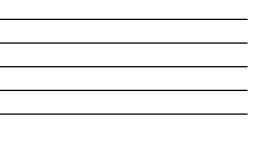


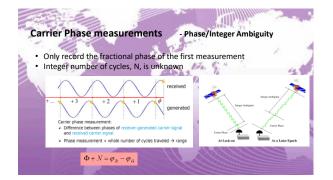


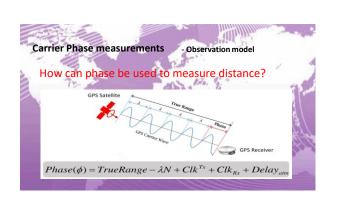




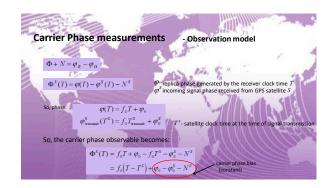

Carrier Phase measurements	
"Phase," "Frequency" and "Clock Time"	1 1
Time - based on some form of periodic motion	
The rotation of the Earth, the orbit of the Earth around the Sun –	Dynamic time (Day/Year)
The oscillation of a quartz crystal in a wristwatch - Atomic time	Time, 1
Angles of rotation (Phase) - measure of time	
Clock time T(t) $T(t) = k(\varphi(t) - \varphi_0)$	Rotates with frequency, f

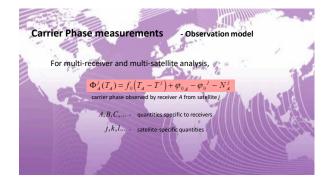

C	arrier Phase measureme	ants
"	Phase," "Frequency" and "Cloc	k Time, /
	Frequency - Cycles per second	
	Number of times the line completes	a full 360° Rotates with
	rotation in one second	frequency, f
	and the second s	
	Constant frequency (f_0) - ideal clock	
	Phase of an ideal clock:	
	Phase of an Ideal Clock:	$\left \phi(0) = \phi_0 \right \qquad \phi(t) \qquad \phi[cyc]$
	$\varphi_{ideal} = \varphi(t) = f_0 t + \varphi_0$	
	rideal r(r) 50° r0	
		$f_0 t$ = number of cycles since

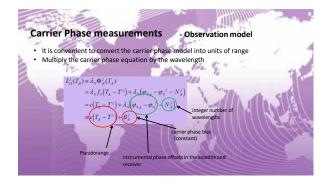




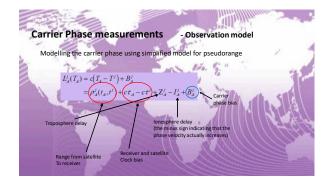


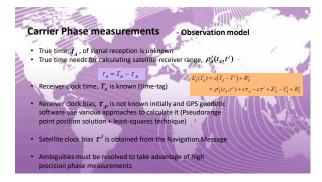


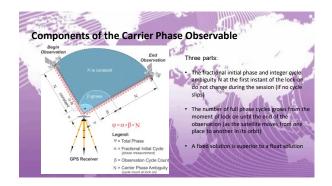


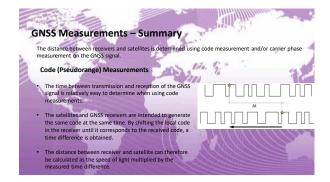






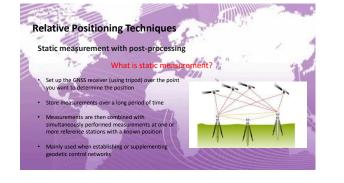




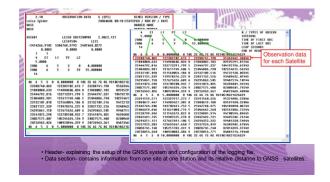


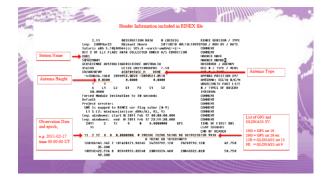
Carrier Phase measureme	nts - Observation model
Modelling the carrier phase using sim $L_{x}^{\prime}(T_{x}) = c(T_{x} - T') + B_{x}^{\prime}$ $= (P_{x}^{\prime}(t_{x}, t') + cT_{x} - cT')$	plified model for pseudorange

mparison Code Vs C		
5. 1 N 1 2 3	Code measurement	Carrier phase measurement
Time required	Short observation time (seconds)	Short to long observation time (few seconds to hours), depending on application.
Receiver	Simple GNSS receivers	Advanced GNSS receivers
Measurement uncertainty (in plane)	Tens of meters at absolute positioning. Meter level at relative positioning	Centimeter level at relative positioning with determination of integer phase ambiguities.
Sensitivity to signal interruption	Less sensitive, as the measurement period is short.	More sensitive, as determining integer phase ambiguitites require uninterrupted measurement (sometimes over a long period of time).

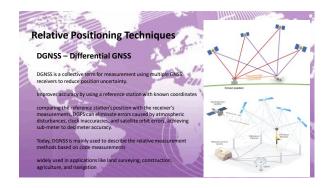


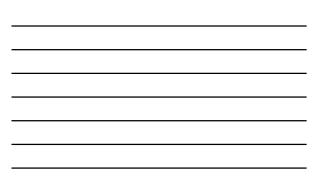
he receiver is determined directly owards the GNSS satellites, and only	receiver is determined relative to one o more points with known position.
one GNSS receiver is used.	1111
I/AZ	L DXXT

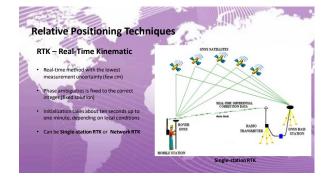


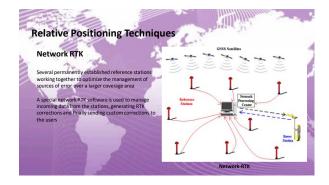


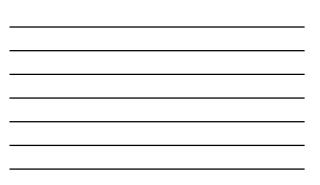
Static measure	ement with pos	t-processing		/
72-	What is F	RINEX Format?	Ta, Ja	17
Receiver Independent	Exchange format.	2.11 085 TFF 3.8.3 MART.7 7068	SERVATION DATA M (MIXED) 10-358R-18 23:	RINEX VERSION / 59 PGN / RUN BY / MARKER NAME MARKER NAME
Can be stored directly	or converted.	SITE NAME: MARTSBO-MAST SWEPO3 LMS 5137X78448 TRI 05040009 LET	r 7 IMBLE NETR9 5.30 IAR25.R3 LEIT	COMMENT OBSERVER / AGES REC # / TYPE / ANT # / TYPE
works as a standard fo	transmission format tha r raw data, i.e. code and	2990195.7501 931449	7EN IN SWEREF 99 (ETRS 89) 8.7099 5533392.6361 0.000 0.000	COMMENT APPROX POSITION ANTENNA: DELTA HAVELENGTE FACT
carrier observations fro		11 C1 P1 1 15 55 15.000	11 51 C2 92 12 5	2 CS# / TYPES OF OB # / TYPES OF OB INTERVAL
Special text format inc				

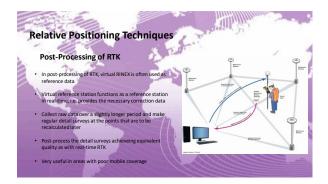


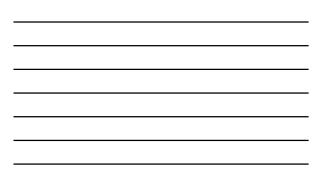


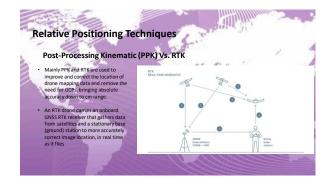


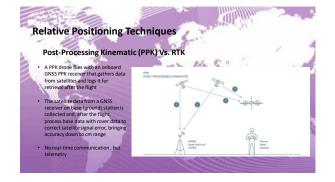












Absolute Positioning Techniques

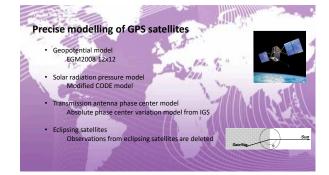
Precise Point Positioning (PPP)

- Use all the available GNSS constellations (GPS, GLONASS, GALILEO, BEIDOU, Q2SS)
 Combine precise satellite positions and clocks with un-differenced, dual-frequency (to remove the first order effect of the ionosphere), pseudorange and carrier-phase GNSS observables, Centimeter level precision.
- level precision Alternative to Differential Global Navigation Satellite System (DGNSS)- not require simultaneous observations from multiple stations
- Require a fairly long convergence time to achieve the utmost performance
- Use of a network of reference stations in order to compute precise estimates of GNSS satellites orbits and clock errors (<u>http://www.ies.org/network</u>)

IGS INTERNATIONAL G N 55 SERVICE Network

Network

CDC Catallita D			and the second second	Cart St.		
GPS Satemite E	ohemeri	des / Satel	lite & Statio	on Clocks		2
Type		Accuracy	Latency	Updates	Sample Interval	
-	orbits	~100 cm				Broadcas
Broadcast	Sat. clocks	~5 ns RMS ~2.5 ns SDev	real time - o	daily Broadcas Ephemeri		
	orbits	~6 cm	real time	at 03, 09, 15, 21 UTC		
Ultra-Rapid (predicted half)	Sat. clocks	-3 ns RMS -1.5 ns SDev			15 min	1. 5 6
	orbits	-3 cm				Revel RE
Ultra-Rapid (observed half)	Sat. clocks	~150 ps RMS ~50 ps SDev	3 - 9 hours	at 03, 09, 15, 21 UTC	15 min	Precise
	orbits	~2.5 cm			15 min	Ephemer
Rapid	Sat. & Stn. clocks	~75 ps RMS ~25 ps SDev	17 - 41 hours	at 17 UTC daily	5 min	$\langle () \rangle$
	orbits	-2.5 cm			15 min	
Final	Sat. & Stn. clocks	-75 ps RMS -20 ps SDev	12 - 18 days	every Thursday	Sat.: 30s Sto.: 5 min	

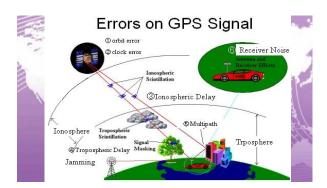


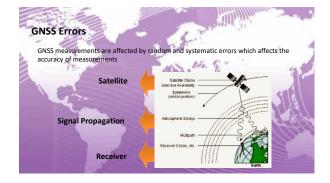
Analysis Center Coordinator (ACC)		
Institution	Abbreviation	Country
Geoscience Australia & Massachusetts Institute of Technology	GAMIT	Australia/USA
IGS Analysis Centers (ACs)	Abbreviation	Country
Natural Resources Canada	EMR	Canada
Wuhan University	WHU	China
Geodetic Observatory Pecny	GOP-RIGTC	Czech Republic
Space geodesy team of the CNES	GRG	France
European Space Agency/ESOC	ESA/ESOC	Germany
GeoForschungsZentrum	GFZ	Germany
Center for Orbit Determination in Europe	CODE	Switzerland
Jet Propulsion Laboratory	JPL	USA
Massachusetts Institute of Technology	MIT	USA
NOAA/National Geodetic Survey	NGS	USA

53

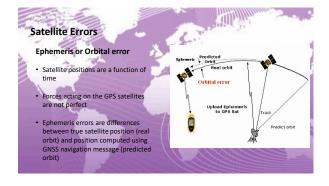
IGS Analysis Centers (ACs & ACC)	and the
----------------------------------	---------

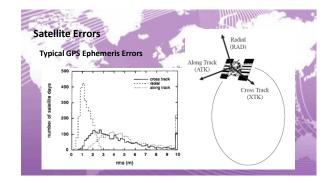


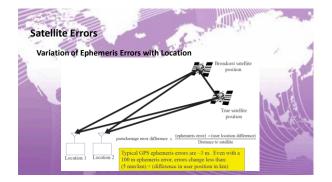


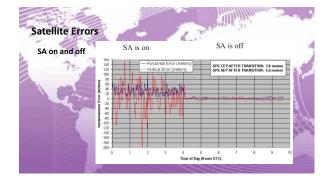


56



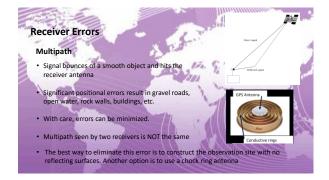


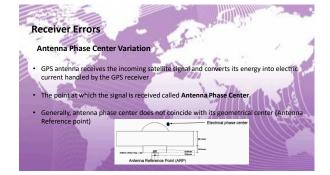


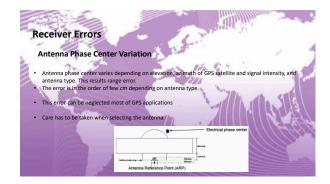


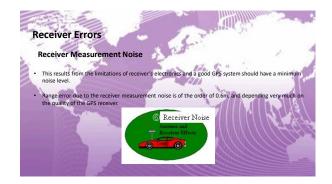
Satellite Errors

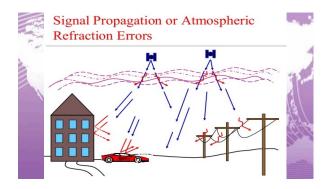
Satellite and Receiver Clock Errors

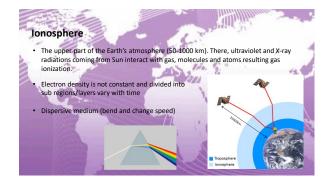

GPS block II and IIA (Legacy satellites) -4 atomic clocks (2-cesium and 2-rubidium)
 Block IIR, IR-M, IIF (modernized) - Rubidium atomic clocks only
 GPS III satellites (latest modernized) contain Rubidium and Mercury Atomic

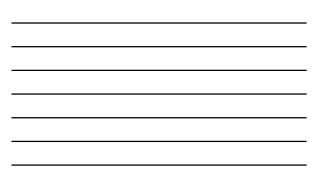

C. AND MARK

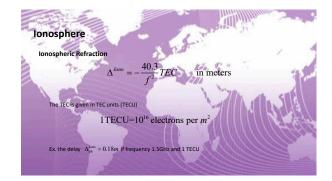

- GPS III satellites (latest modernized) contain Rubidium and Mercury Atomic Frequency Standard clocks.
- Satellite clock error is about 8.64-17.28 nanoseconds per day. The corresponding range error is 2.59-5.18 m

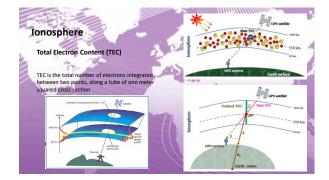


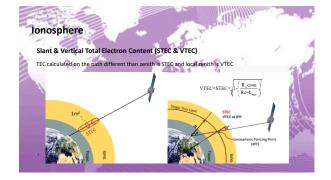


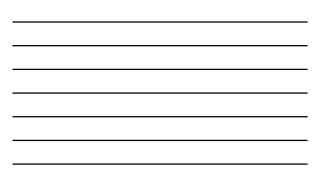


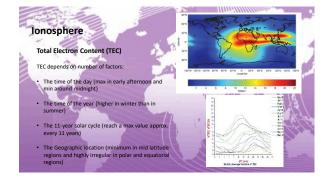


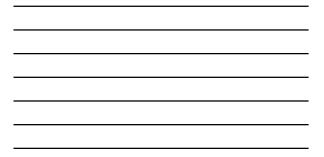


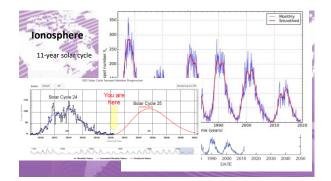


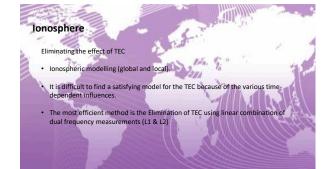


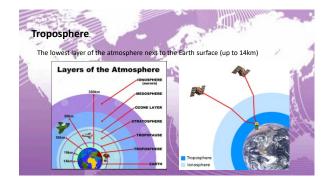


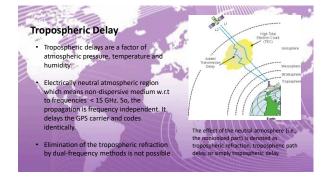


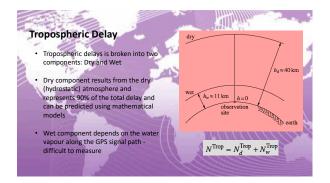


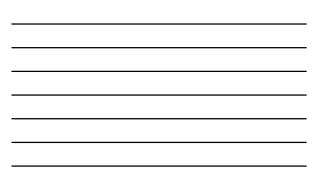


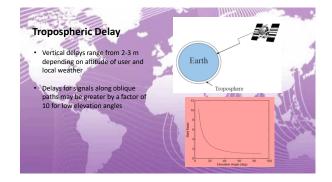


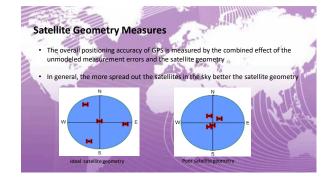


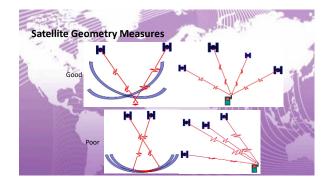












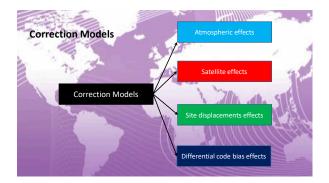
Many correction models:	Simplest:
in the	 Use global average weather conditions to determine vertical trapecylocric enter
15- 4	- Apply althude connection and alevation angle scale factor
	- Residual errors -25 cm for overhead satellite
X	 More complicated:
Transplarie date	 Use average local weather (a.g., pressure, temperature, humidity) determined from table loatsup
dale conveine	- Apply slittude contaction and devation angle scale factor
	- Residual errors ~6 cm for overhead sublife
all and a second	 Most complicated:
(Alexandra)	- Use meteorological sensors
	- Residual arrans -4 cm for averhead satallite

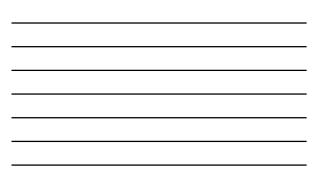
......

Satellite Geometry Measures

Satellite geometry can affect the quality of GPS signals and accuracy of receiver trilateration .

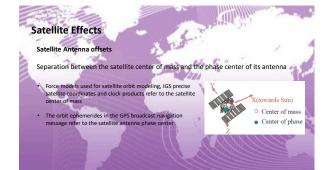
(III)

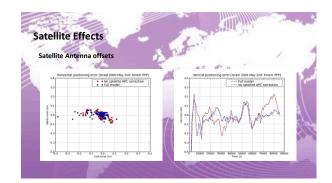

- trilateration
 Dilution of Precision (DOP) reflects each satellite's position relative to the other satellites. The lower the value of the DOP, the better the geometric strength.
- DOP is computed based on the relative receiver-satellite geometry at any instance that requires the receiver and satellite coordinates.
- DOP changes due to movement of satellites (rising or falling) and obstruction between the receiver and the satellite
- GPS receivers can pick best satellites which provide better geometry


Dilution of Precision

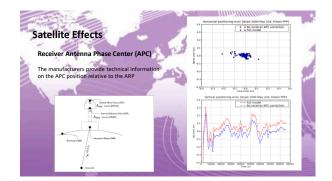
- PDOP Position Dilution of Precision (commonly used)
- PDOP Position Dilution of Precision HDOP Horizontal Dilution of Precision VDOP Vertical Dilution of Precision
- TDOP Time Dilution of Precision
- GDOP Geometric Dilution of Precision
- PDOP represents the contribution of satellite geometry to the 3-D positioning accuracy
- PDOP -> (HDOP+VDOP) satellite geometry effect of horizontal and vertical component accuracy.

Dilution of Prec	ision	4.	Inner Section
How to check?	100		1
75-2	QUALITY	PDOP	11
100	Very Good	1-3	AL STE
a dans	Good	4-5 🐰	12713
	Fair	6	
100	Suspect	>6	11111
1000	2000000	1000000	

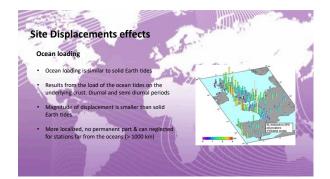



Atmospheric Effects

 The propagation of electromagnetic waves needs to be taken into account in precise positioning.


. . .

- First-order ionospheric effect can be mitigated using the dual-frequency linear combination of ionospheric-free GNSS observables. The higher-order ionospheric effects need to be included into the PPP measurements models
- For tropospheric delay effects, separately account for the hydrostatic (dry) and wet components of the ZTD
- Dry component can be accurately computed from surface pressure, station latitude and height, while the wet one is estimated from the data



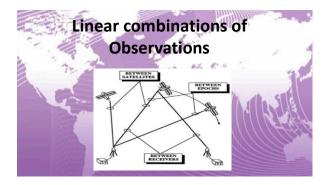
- Site Displacements effects
- Station undergoes periodic movements (real or apparent) reaching a few dm that are not included in the corresponding International Terrestrial Reference Frame (ITRF)

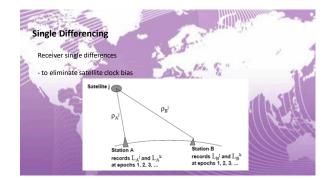
- Most of the periodical station movements are nearly the same over broad areas of the Earth, they nearly cancel in relative positioning over short (<100 km) baselines and thus need not be considered
- However, must considered for solutions consistent with the current ITRF conventions by using a PPP un-differenced approach or a relative positioning approach over long baselines (> 500 km)
- Should add the site displacement correction terms to the regularized ITRF coordinates

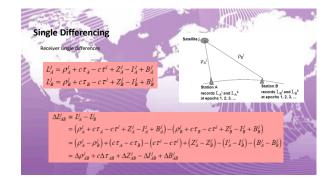
Differential Code Biases effects

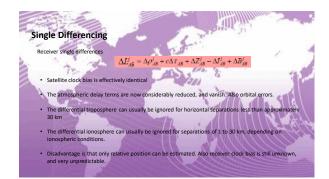
 Systematic errors, or biases, between two GNSS code observations at the same or different frequencies. Required for code-based positioning of GNSS receivers.

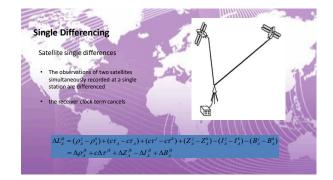
- Precise clock products have been generated with the same types of observations, measurements biases are not considered
- If the dual-frequency combined observation in different types of signals, e.g., L2 P(Y)-code and L1 C/A-code, an additional term (Differential Code Bias (DCB)) needs to be introduced in order to translate the satellite clock offset and make it compatible with the employed observations

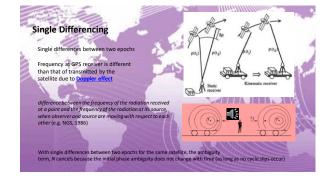


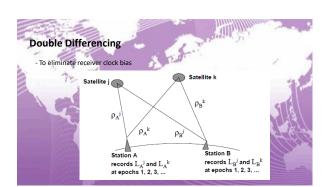


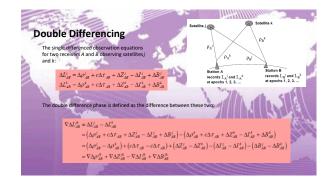

- Code pseudorange measurements are unambiguous, but noisy
 Carrier phase measurements are very precise, but include integer cycle
 ambiguity
- Advantage to use all observables, or their linear combinations, in the param estimation process
- Unlimited number of possibilities exists, to combine the different observables, and to form derived observables

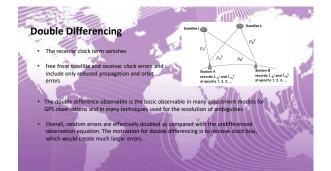

eter

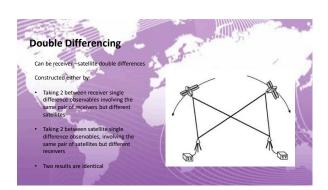


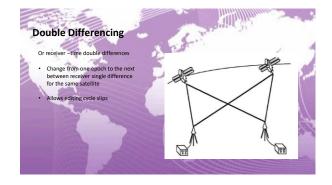


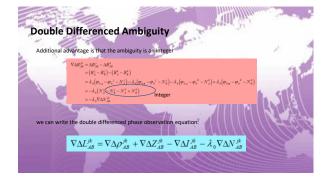


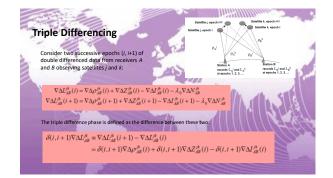


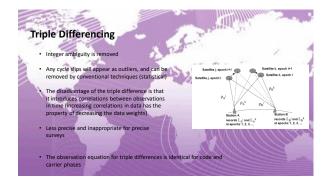


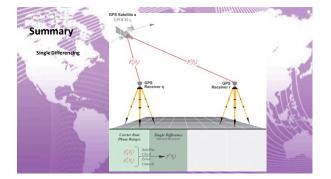


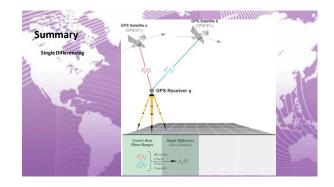


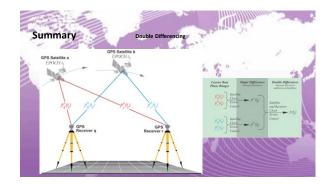


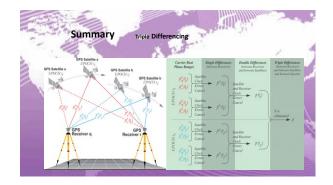




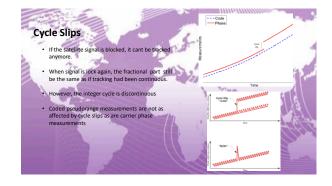


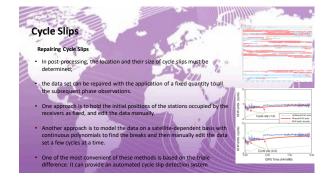


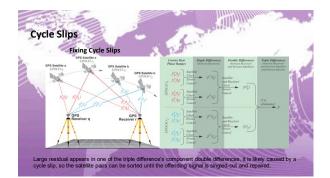


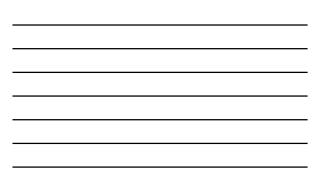


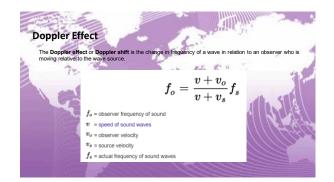


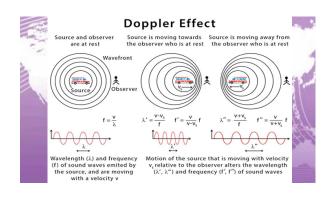


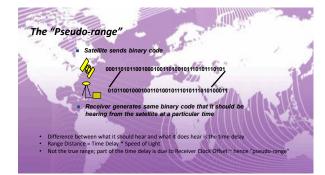


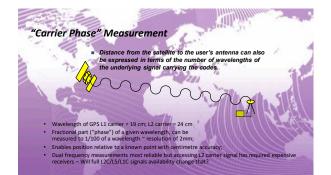


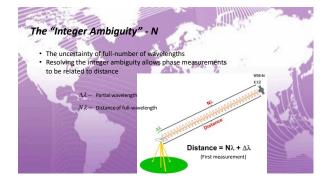


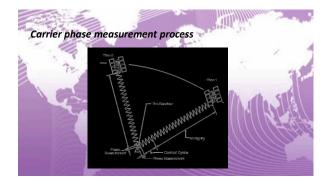


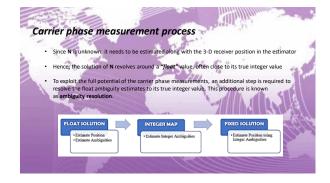


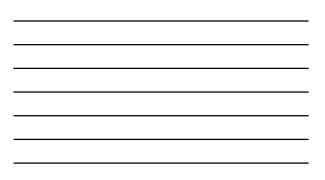


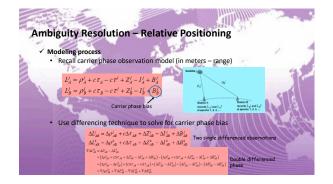


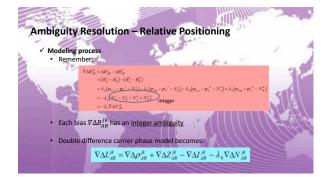


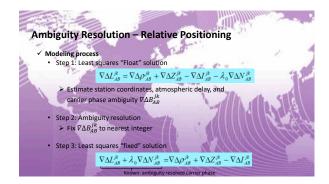


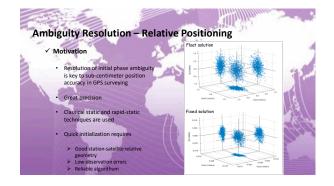




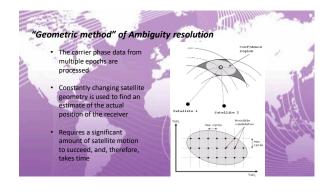


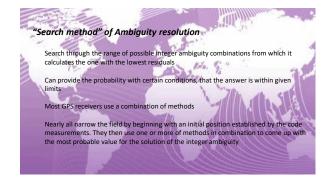

. in pulle Ambiguity Resolution – Relative Positioning


and carrier phase


- ✓ Requirements Precise Engineering Surveying
 2 stations (baseline), multiple stations (network)
 Carrier phases from ≥ 4 satellites, then double-differences
 - . Use broadcast orbits and clocks
 - Assume values for one station and its clocks Estimate, using weighted least squares, station coordinates,
 - ambiguities Fix ambiguities to integer values and iterate

 - Achievable precision: < <u>1cm</u>
 > or few cm x 10 km using broadcast orbits
 - Can be post-processed or real-time
- ✓ Process depends on AMBIGUITY RESOLUTION





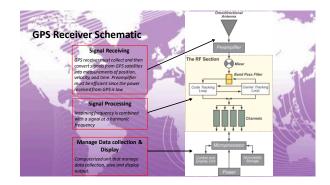
"Filtering method" of Ambiguity resolution

lowest noise level

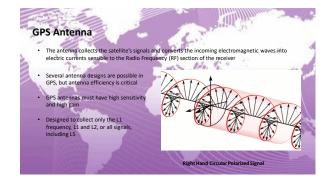
Independent measurements are averaged to find the estimated position with the lowest noise level

100

Objectives

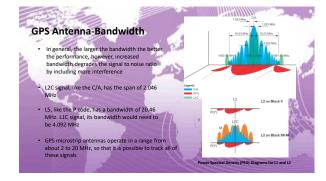

 Recognize the basic functions of the common features of GPS receivers, the antenna, the preamplifier, the RF section, the microprocessor, the CDU, the storage and the power;

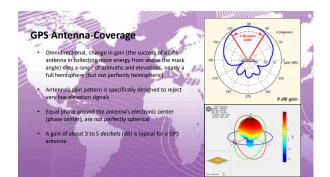
ANDANN

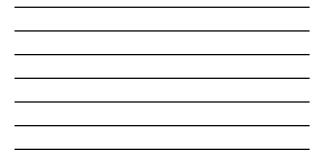

- Recognize some of the important issues in choosing a GPS receiver;
- Discuss some of the trends in receiver development;

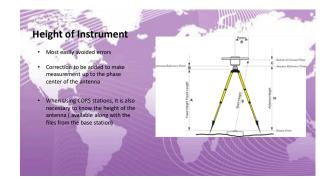
Common features of GPS receivers • Many different GPS receivers on the market and they are generally capable of accuracies from sub meter to centimeters.

- Most are also capable of performing differential GPS, real-time GPS, static GPS, etc.,
- Usually accompanied by processing and network adjustment software and so on.
- GPS receivers come in a variety of shapes and sizes
- Most have similar characteristics (common components)

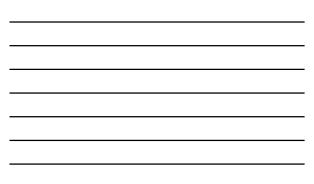


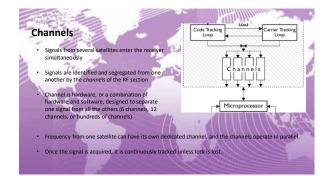


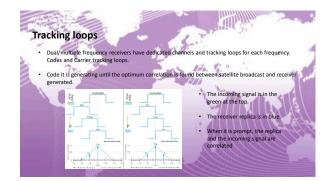


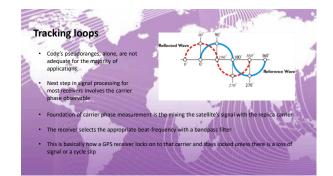


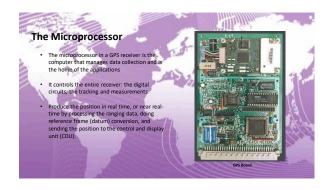


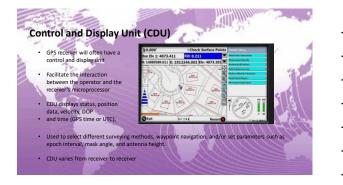


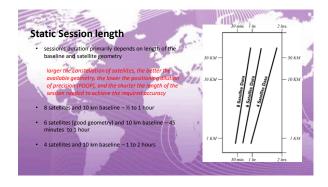


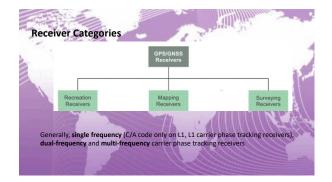














Recreational receivers	Autonomous Horizontal Precision	Real-time Corrected Horizontal Network Accuracy	Post-processed Horizontal Network Accuracy
Mapping Receivers	Autonomous Horizontal Precision	Real-time Corrected Horizontal Network Accuracy	Post-processed Horizontal Network Accurac
Mapping (L1 Code)	2 - 10m	0.5 - 5m	0.3 - 15m
Mapping (L1 Code & Carrier)	2 - 10m	0.5 - 3m	0.2 - 1m
Survey Receivers	Autonomous Horizontal Precision	Real-time Corrected Horizontal Network Accuracy	Post-processed Horizontal Network Accuracy

